Face Recognition using One-shot Learning
نویسندگان
چکیده
منابع مشابه
Deep Attributes for One-Shot Face Recognition
We address the problem of one-shot unconstrained face recognition. This is addressed by using a deep attribute representation of faces. While face recognition has considered the use of attribute based representations, for one-shot face recognition, the methods proposed so far have been using different features that represent the limited example available. We postulate that by using an intermedi...
متن کاملOne-Shot-Learning Gesture Recognition Using HOG-HOF Features
The purpose of this paper is to describe one-shot-learning gesture recognition systems developed on the ChaLearn Gesture Dataset (ChaLearn). We use RGB and depth images and combine appearance (Histograms of Oriented Gradients) and motion descriptors (Histogram of Optical Flow) for parallel temporal segmentation and recognition. The Quadratic-Chi distance family is used to measure differences be...
متن کاملOne-shot-learning Gesture Recognition Using Hog-hof Features Bachelor Thesis One-shot-learning Gesture Recognition Using Hog-hof Features Bachelor Thesis Názov: One-shot-learning Gesture Recognition Using Hog-hof Features
The purpose of this thesis is to describe one-shot-learning gesture recognition systems developed on the ChaLearn Gesture Dataset [3]. We use RGB and depth images and combine appearance (Histograms of Oriented Gradients) and motion descriptors (Histogram of Optical Flow) for parallel temporal segmentation and recognition. The Quadratic-Chi distance family is used to measure differences between ...
متن کاملOne-shot Face Recognition by Promoting Underrepresented Classes
In this paper, we study the problem of training largescale face identification model with imbalanced training data. This problem naturally exists in many real scenarios including large-scale celebrity recognition, movie actor annotation, etc. Our solution contains two components. First, we build a face feature extraction model, and improve its performance, especially for the persons with very l...
متن کاملOne-Shot Imitation Learning
Imitation learning has been commonly applied to solve different tasks in isolation. This usually requires either careful feature engineering, or a significant number of samples. This is far from what we desire: ideally, robots should be able to learn from very few demonstrations of any given task, and instantly generalize to new situations of the same task, without requiring task-specific engin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2018
ISSN: 0975-8887
DOI: 10.5120/ijca2018918032